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ABSTRACT  

A cryptographic hash function is a deterministic procedure whose input is an arbitrary block of data and output is 

a fixed-size bit string, which is known as the (Cryptographic) hash value. Cryptographic hash functions are the workhorses 

of cryptography, and can be found everywhere. Originally created to make digital signatures more efficient, they are now 

used to secure the very fundamentals of our information infrastructure, message authentication codes (MACs), [1] secure 

web connections, encryption key management.  

  Here is an algorithm which is implemented on FPGA. An essential part of this work is hardware performance 

evaluation of the hash function algorithms. In this work  we present efficient hardware implementations and hardware 

performance evaluations of the algorithm. We implemented and investigated the performance of efficient hardware 

architectures on latest Xilinx FPGAs. we conclude the  results in the form of chip area consumption, throughput and 

throughput per area on most recently released devices from Xilinx on which implementations have not been reported yet. 

We have achieved substantial improvements in implementation results from all of the previously reported work. This work 

serves as performance investigation of the given algorithm on most up-to-date FPGAs. 
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INTRODUCTION 

  Over the last three decades, the use of information technology in our everyday lives has increased dramatically. 

Due to this, the growth rate for e-commerce has been double-digit over the last decade, with an estimated $301 billion 

expected online retail sales in 2012 [1]. This extreme increase in online trading has lead to a rise in online attacks to obtain 

money through deception or other illegal means. Due to this, companies and consumers using e-commerce have become 

more aware of security risks exchanging information over such an open medium. This increased knowledge has lead to 

several third parties setting up secure areas for credit card and bank account details to be shared with minimal risk of the 

numbers being obtained and used fraudulently When shopping on The Internet, a connection is set up between the 

computer being used and the company server. This is done using a “Challenge and Response” through the Transport Layer 

Security (TLS), [10]. 

  Challenge and Response uses a mixture of symmetric block ciphers and Message Authentication Codes (MAC). 

The MAC is constructed using a Hash Function.A cryptographic hash function is a deterministic procedure whose input is 

an arbitrary block of data and output is a fixed-size bit string, which is known as the (Cryptographic) hash value. 

Cryptographic hash functions are the workhorses of cryptography, and can be found everywhere.[2] Originally created to 

make digital signatures more efficient, they are now used to secure the very fundamentals of our information infrastructure, 

message authentication codes (MACs), secure web connections, encryption key management, virus- and malware-

International Journal of Electronics and 

Communication Engineering (IJECE) 

ISSN 2278-9901 

Vol. 2, Issue 1, Feb 2013, 77-86 

© IASET 



78                               Atuliika Shukla, Sumit Sharma & Ravi Mohan 
 

scanning, and almost every cryptographic protocol in current use.[3] Without hash functions, the Internet would simply not 

work. 

OVERVIEW 

  We have designed a  family of cryptographic hash functions. The proposed design has three different internal state 

sizes: 256, 512, and 1024 bits. Each of these state sizes can support any output size. The proposed design is built from 

three components, Threefish tweakable block cipher, Unique Block Iteration (UBI) and Optional argument system. The 

tweakable block cipher makes every instance of compression unique by hashing configuration data along with input 

message. The compression function of the proposed design consists of a layer of non-linear MIX operations and 

permutation. MIX operation consists of addition modulo 2
64

, rotation and XOR operation on a pair of 64-bit words. The 

Threefish compression function is used in UBI chaining mode to compress arbitrary length of input data to fixed size hash 

digest. 

RELATED WORK  

There are two main streams of hardware implementations of algorithms on FPGA and ASIC platforms: high 

speed implementations and compact implementations.[4] Various groups around the world are working on hardware 

performance evaluation of cryptographic hash functions using these two types of implementations. Most of the reported 

work is focused on high speed architectures as it provides a direct snapshot of the basic operations’ cost for a given 

algorithm. The relevant category for our work is high speed implementations on FPGAs. 

People discussed and reported their results for various architectures using pipelining, folding and loop unrolling 

approaches. For performance comparison, we quote here the results of architecture based on basic iterative approach. We 

have been calculated specifications based on the reported clock frequencies and number of clock cycles consumed for the 

proposed design.[5] 

ENVIRONMENT 

It effects the implementations in terms of the level of expertise, language, coding techniques, design methodology, 

and development tools. We implemented the design using VHDL as the language and using Xilinx’s ISE 13.1/Altera’s 

Quartus-II as the development tool [6]. 

IMPLEMENTATION METHODOLOGY 

We have implemented the 512-bit variants of the proposed design. Our design is fully autonomous with complete 

I/O interfaces.[7] We targeted for efficient implementations but keeping in mind the fair hardware performance 

comparison the proposed design. We assure this approach by catering for the following constraints: 

The proposed Design is built from these three components: 

 Threefish. Threefish is the tweakable block cipher at the core of design, defined with a 512-bit block size. 

 Unique Block Iteration (UBI). UBI is a chaining mode that uses Threefish to build a compression function that 

maps an arbitrary input size to a fixed output size. 

 Optional Argument System. This allows design to support a variety of optional features without imposing any 

overhead on implementations and applications that do not use the features. 
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  Dividing up our design in this way makes it easier to understand, analyze, and prove properties about. The 

underlying Threefish algorithm draws upon years of knowledge of block cipher design and analysis.[11] UBI is provably 

secure and can be used with any tweakable cipher. The optional argument system allows design to be tailored for different 

purposes. These three components are independent, and are usable on their own, but it's their combination that provides 

real advantages. 

Datapath Architectures for Propose Design  

  The datapath implemented for  the proposed design shown in Fig.(a). Add_Subkey module consists of 8, 64-bit 

adders, implemented using fast carry chain logic available in Xilinx FPGAs. The Threefish compression function of   

 

(a) Data Path of the Design 

 

(c) Selection between Two Rotation Constants in MIX Operation 
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proposed design is partially implemented using 4 unrolled rounds. These 4 rounds are then iteratively used to complete 72 

rounds of compression function. The novel idea in implementation of these 4 unrolled rounds is that, we do not need 

separate MIX modules and multiplexers to select between different rotation constants in second step of MIX operation. We 

have efficiently implemented second step in MIX module using a LUT4 primitive depicted in Fig.(c).  

  The select bit s, selects between two rotated instances of  x1 according to round number  to XOR with y0. For first 

four rounds  s is zero and upper half  rows of rotation constants’ table are used for respective MIX modules. For next four 

rounds s will be 1 and lower half  rows of rotation constants’ table are used for respective MIX modules. For example  

x1<< 46  will be selected and XORed with s0 in first round and  x1<< 39  will be selected and XORed with y0 in fifth 

round. Hardware architecture of key schedule module is shown in Fig.(b). The extended key K8 is obtained by XORing the 

input 64-bit key words (K0…..K7) and constant C240. The extended teak t2 is obtained by XORing the two input 64-bit 

tweak word (t0 and t1). The extended key and tweak words are then loaded into the circular shift registers K (576 bit) and t 

(192 bit). These two registers are clocked and rotated once for each subkey. Key Schedule module generates subkeys on 

every falling edge of clock pulse. Add_Subkey module gives output on the rising edge of each clock pulse. Next subkey is 

available on falling edge of the same clock pulse. In this way one clock cycle is required to complete four rounds, subkey 

addition and subkey generation. Therefore to complete 72 rounds and 19 subkey addition of design, 19 clock cycles will be 

required. The next chaining hash value will be available after 19 clock cycles. 

A Full Specification of Proposed Design Type Values 

  The Design has many possible parameters. Each parameter, whether optional or mandatory, has its own unique 

type identifier and value. Type values are in the range 0..63. Design processes the parameters in numerically increasing 

order of type value, as listed in Table 1. 

Table 1: Values for the Type Field 

 

Symbol Value Description 

Tkey) 0 Key (for MAC and KDF) 

Tcfg 4 Con_guration block 

Tprs 8 Personalization string 

TPK 12 Public key (for digital signature hashing) 

Tkdf 16 Key identi_er (for KDF) 

Tnon 20 Nonce (for stream cipher or randomized hashing) 

Tmsg 48 Message 

Tout 63 Output 

The Configuration String 

The configuration string contains the following data: 

 A schema identifier. This is a literal constant. If some other standardization body wants to define an entirely 

different function based on UBI and Threefish, it can chose a  different schema identifier and ensure that its function 

is different from Skein. 

 A version number, to support future extensions. 

 No: the output length of the computation, in bits. This ensures that two Skein computations 

that di_er only in the number of output bits give unrelated results. 

 Yl: Tree leaf size encoding. Set to 0 if tree hashing is not used. 

  Yf : Tree fan-out encoding. Set to 0 if tree hashing is not used. 

  Ym: Max tree height. Set to 0 if tree hashing is not used. 
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The Output Function 

  The function Output(G;No) takes the following parameters: 

  G the chaining value. 

  No the number of output bits required. and produces No bits of output. 

The result consists of the leading [No/8 ] bytes of 

   O = UBI(G,ToBytes(0, 8), Tout2
120

)jj 

 UBI(G;ToBytes(1; 8); Tout2
120

)jj 

 UBI(G;ToBytes(2; 8); Tout2
120

)jj_ _ _ 

  If No mod 8 = 0 the output is an integral number of bytes. If No mod 8 ≠ 0 the last byte is only partially used. 

Using Function as Simple Hashing 

  A simple hash computation has the following inputs:[8] 

  Nb The internal state size, in bytes. Must be 32, 64,  

  No  The output size, in bits. 

  M  The message to be hashed, a string of up to 2
99

- 8 bits (2
96

- 1 bytes). 

  Let C be the con_guration string defined as with  

   Yl = Yf = Ym = 0 

  We define: 

   K’= 0
N

b  a string of Nb  zero bytes 

   G0 := UBI(K, C, Tcfg2
120

) 

   G1 := UBI(G0, M, Tmsg2
120

) 

   H := Output(G1, No) 

  where H is the result of the hash. 

  In its full general form, a design computation has the following inputs: 

 Nb The internal state size, in bytes. Must be 32, 64, or 128 

 No The output size, in bits. 

 K  A key of Nk bytes. Set to the empty string (Nk = 0) if no key is desired. 

 Yl  Tree hash leaf size encoding. 

 Yf  Tree hash fan-out encoding. 

 Ym  Maximum tree height. 

 L    List of t tuples (Ti;Mi) where Ti is a type value and Mi is a string of bits encoded in a string of bytes. 

We have: 
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  L := (T0;M0),…….. (Tt-1,Mt-1) 

  We require that Tcfg < T0, Ti < Ti+1 for all i, and 

  Tt-1 < Tout. An empty list L is allowed. Each 

  Mi can be at most 2
99

- 8 bits (= 2
96

 - 1 bytes) long. 

  The first step is to process the key. If Nk = 0, the starting value consists of all zeroes. 

K’ = 0
Nb 

  If Nk 6= 0 we compress the key using UBI to get our starting value 

K’ = UBI(0
Nb

 , K; Tkey2
120

) 

  Let C be the con_guration string de_ned in Section 3.5.2. We compute: 

G0  := UBI(K’,C, Tcfg2
120

) 

  The parameters are then processed in order: 

Gi+1 := UBI(Gi,Mi, Ti2
120

) for i = 0………… t -1 

  with one exception: if the tree parameters Yl, Yf , and Ym are not all zero, then an input tuple with Ti = Tmsg is 

processed ,rather than with straight UBI [9]. 

  And the final result is given by: 

H := Output(Gt;No) 

Tree Processing 

  The message input (type Tmsg) is special and can be processed as a tree. Figure 10 gives an example of how tree 

hashing works. Tree processing is controlled by the three tree parameters Yl, Yf , and Ym in the con_g block. Normally 

(for non-tree hashing), these are all zero. If they are not all zero, the normal UBI function that processes the Tmsg field is 

replaced by a tree hashing construction, this is a drop-in replacement of that one UBI function; all other parts of Skein are 

unchanged.The tree hashing uses the following input parameters:. 

 

An Overview of Tree Hashing 

  Yl  The leaf size encoding. The size of each leaf of the tree is Nb2
Yt

 bytes with Yl ≥1. 

  Yf  The fan-out encoding. The fan-out of a tree node is 2
Yf

 with Yf ≥1. 

  Ym  The maximum tree height; Ym ≥2. (If the height of the tree is not limited, this parameter is set to 255.) 

  G  The input chaining value. This is the G input of the UBI call that the tree hashingreplaces, and the output                

of the previous UBI function in the Skein computation. 



Hardware Implementation of Advanced Cryptographic Hash Function on FPGAs                     83 

  M  The message data. 

  We de_ne the leaf size Nl := Nb2
Yt

 and the node size Nn := Nb2
Yt

 

  The message data M is a string of bits encoded in a string of bytes. We _rst split M into one or more message 

blocks M0,0,M0,1;M0,2; :::;M0,k-1. If M is the empty string, the split results in a single message block M0;0 that is itself 

the empty bit string. If M is not the empty string, then blocks M0;0; : : : ;M0;k-2 all contain 8Nl bits and block M0;k-1 

contains between 1 and 8Nl bits. We now define the first level of tree hashing 

 

  Note that in the tweak, the tree level field is set to one and the Position field is given an offset equal to the starting 

offset (in bytes) of the message block. 

  The rest of the tree is de_ned iteratively. For any level l = 1, 2,…….. we use the following rules. 

  If Ml has length Nb then the result Go is defined by         Go := Ml. 

  If Ml is longer than Nb bytes and l = Ym -1 then we have almost reached the maximum tree 

height. The result is defined by: 

 

  If neither of these conditions holds, we create the next tree level. We split Ml into blocks Ml;0, Ml;1………Ml;k-

1 where all blocks but the last one are Nn bytes long and the last block is between Nb and Nn bytes long. We then define 

 

and apply the above rules to Ml+1 again.  

  The result Go is the output of the tree hashing. It becomes the chaining input to the next UBI function in design. 

(Currently there are no types defined between Tmsg  and Tout, so Go becomes the chaining input to the output 

transformation.) As Yf ≥1 each node of the tree has a fan-out of at least 2, so the height of the tree grows logarithmically in 

the size of the message input. 

Security Claims 

  The design has been developed to be secure for a wide range of applications, including but not limited to digital 

signatures, key derivation, pseudorandom number generation, and stream cipher usage. Design supports personalized and 

randomized hashing. Under a secret key, Design  can be used for message authentication and as a pseudorandom 

function.[12]. 

  Below, we write n for the state size, and m for the minimum of state and output size. We claim the following  

levels of security against standard attacks 

 First pre-image resistance up to 2
m
. 
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 Second pre-image resistance up to 2
m
. 

 Collision resistance up to 2
m/2

. 

 Resistance against r-collisions up to roughly min (2
n/2

 , 2
(n-1)m/r

.)  (An r collision consists of r different messages 

M1, . . . , Mr with H(M1) =………… = H(Mr).) 

Summary  

In this paper, an architecture with multi-mode operation and the VLSI implementation of the hash function is 

proposed. The system can support efficiently the security needs, with higher offered security level compared with the 

previous existing standard hash functions. Furthermore, this proposed system could substitute the implementations of the 

existing hash standard, in all types of applications, such as digital signatures, message authentication codes and random 

number generators, with better achieved performance and higher supported security level. The introduced system performs 

efficiently for the three SHA-2 standard functions (256, 384 and 512). The proposed system covers less area resources 

compared with previous published implementations [13], and achieves higher operation frequency compared with other 

related works [13]. In some cases, it also achieves higher performance at about 277 and 417% than other hardware 

integrations [14].  

As we have shown, it is feasible in fact, quite easy to create pseudo-near-collisions and pseudo near-second-

preimages for up to eight rounds of any variant of the design. Here, \near" means Hamming-distance 2. Using techniques, 

one can push this from eight to twelve rounds, at the cost of some significant but feasible amount of work. Assuming close 

to 2n units of work, it may even be possible to find pseudo-near-second-preimages for up to sixteen rounds of the design-n 

compression function, for either n = 256, n = 512, or n = 1024. 
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